17 anos ajudando empresas
a escolher o melhor software

Conheça Dataiku

De análise em escala a IA corporativa, o Dataiku conecta pessoas, tecnologias e processos para eliminar obstáculos da jornada de dados. Com um ambiente centralizado e controlado feito para especialistas e exploradores de dados, o Dataiku facilita o gerenciamento de implantações e modelos de uma empresa movida a dados.

Quem usa Dataiku?

O DSS atende a qualquer empresa, independentemente de nível de experiência, setor ou tamanho, que deseja criar suas próprias vantagens estratégicas usando dados, transformando dados brutos em previsões empresariais relevantes.

Dataiku Software - 1
Dataiku Software - 2
Dataiku Software - 3
Dataiku Software - 4
Dataiku Software - 5

Está em dúvida sobre o Dataiku? Compare com uma alternativa popular

Dataiku

Dataiku

4,7 (12)
US$ 0,01
ano
Versão gratuita
Versão de teste gratuita
35
Nenhuma integração encontrada
4,5 (12)
4,3 (12)
4,4 (12)
VS.
Preço inicial
Opções de preços
Recursos
Integrações
Praticidade
Relação qualidade/preço
Atendimento ao cliente
Nenhum preço encontrado
Versão gratuita
Versão de teste gratuita
98
39
4,0 (5)
4,0 (5)
3,7 (5)
As barras de classificação verdes mostram o produto vencedor com base na nota média e no número de avaliações.

Outras ótimas alternativas ao Dataiku

SAS Viya
Melhores recursos
Análise estatística
Modelagem e simulação
Visualização de dados
CrossEngage
Melhores recursos
Nenhum recurso foi avaliado pelos usuários para este produto.
Centralpoint
Melhores recursos
Nenhum recurso foi avaliado pelos usuários para este produto.
UniFi
Melhores recursos
Gerenciamento de documentos
Gerenciamento de pedidos de compra
Lembretes
AnswerRocket
Melhores recursos
Nenhum recurso foi avaliado pelos usuários para este produto.
Google Cloud
Melhores recursos
Armazenamento de dados seguros
Backup e recuperação
Gerenciamento de armazenamento de dados
Nyckel
Melhores recursos
Nenhum recurso foi avaliado pelos usuários para este produto.
MySQL
Melhores recursos
Backup e recuperação
Relational Database Management
Suporte de banco de dados
Asana
Melhores recursos
Gestão de projetos
Gestão de tarefas
Planificação/Programação de projetos

Avaliações do Dataiku

Pontuação média

Geral
4,7
Praticidade
4,5
Atendimento ao cliente
4,4
Recursos
4,6
Relação qualidade/preço
4,3

Avaliações por tamanho de empresa (funcionários)

  • <50
  • 51-200
  • 201-1.000
  • >1.001

Encontre avaliações segundo pontuações

5
67%
4
33%
Grishma
Grishma
Data Scientist, EUA
Usuário do LinkedIn Verificado
Química, 10.000+ funcionários
Usou o software para: Mais de dois anos
Fonte da avaliação

Review for Dataiku platform

5,0 há 10 meses

Comentários: Overall experience is great because it is a good platform for Data Scientists, Data Analysts and Researchers. It has ML and AI functionalities.

Vantagens:

The flow in the Dataiku describes the process flow of the project easily. Scenarios and triggers are there for the automation process. Modeling is easier and shows the validations along with the results. Basic Visualizations can also be done in Dataiku.

Desvantagens:

Sometimes it has complexity in creating web applications and to integrate with other tools.

Attila
Senior Controller, Áustria
Fabricação elétrica/eletrônica, 10.000+ funcionários
Usou o software para: Mais de um ano
Fonte da avaliação

Data modeling & transformation

5,0 há 2 anos

Vantagens:

User-friendly interface makes it easy for non-technical users to build their own flows / infrastructure and automate processes. Also supports multiple languages.

Desvantagens:

Certain advanced functionalities within DI may still require a solid understanding of data science concepts and programming skills.

Avaliador Verificado
Usuário do LinkedIn Verificado
Consultoria de gestão, 5.001–10.000 funcionários
Usou o software para: 6 a 12 meses
Fonte da avaliação

Great Product for Data Science Enablement

4,0 há 3 anos

Comentários: The breadth of choices that one gets with the product is esstial for anyone transioning to get more data science enablement. This platform is great to have a streamlined and operational portfolio of all your data requirements. There are outages that might occur once in a while but the quick turnaround time ensures that work is not compromised

Vantagens:

The ease of onboarding people onto the platfrom is seemless. In addition, Dataiku provides their own modules that help in getting accustomed to the product. The width of options that you get for analysis is also vast and might be a one stop solution for all data science needs

Desvantagens:

The least enjoyable expereince of this product has to be the outages that become frequent with each version revision.

Jaimy
Data Scientist, Países Baixos
Publicidade e marketing, 11–50 funcionários
Usou o software para: 1 a 5 meses
Fonte da avaliação

DataIku is making life easier

5,0 há 2 anos

Vantagens:

Truly makes your life and the one of your team easier! The biggest plus to this program is how over-viewable and de-cluttered. Biggest problem I used to face is having files all over the place, and reports all over the place. Now they can be made more quickly than ever before.

Desvantagens:

Personally, the amount of options can be overwhelming. Luckily, Dataiku does offer learning videos on how to use the platform, which I would highly recommend everyone to watch before diving into this platform. However, as mentioned before, it is easy to get lost in the amount of options there are available.

Vivek
Vivek
Analytics Consultant, Índia
Usuário do LinkedIn Verificado
Serviços e tecnologia da informação, 1.001–5.000 funcionários
Usou o software para: Mais de um ano
Fonte da avaliação

Dataiku - Future of Data Science Platform

5,0 há 3 anos

Comentários: Whether the project requires data accumulation, or preprocessing, or data manipulation, or extracting business insights from data, Dataiku is the go-to platform. It covers end-to-end project execution and deployment along with providing API support.

Vantagens:

time saving, useful for both coders and non-coders, allows for multi-user collaboration and monitoring, creating flowcharts help in maintaining granularity

Desvantagens:

It is in the early phase of its launch, 8 years old precisely. Hence, the customer support is not as widespread as other customer supports like stackoverflow, etc.

Avaliador Verificado
Usuário do LinkedIn Verificado
Bancos, 10.000+ funcionários
Usou o software para: 6 a 12 meses
Fonte da avaliação

Awesome software for Machine Learning

4,0 há 2 anos

Comentários: Overall the software is good and can be used for repetitive tasks with high accuracy. Only downside is the new data source connection and editing after the workflow is created

Vantagens:

Data flows Automation is easy and efficient Data Discovery

Desvantagens:

Editing or connecting to a new data source is difficult Low visibility inside the flows Sometimes slow to work due to heavy workflow

Vincent
Founder, França
Usou o software para: Não especificado
Fonte da avaliação

Making Kaggle Submissions with DSS

4,0 há 10 anos

Comentários: As a non - data scientist, i was curious to see how DSS could help me with the data preparation (cleaning and combining data), feature engineering and predictive modelling phases of a data analysis project My goal was to make 2 submissions on Kaggle challenges in under 1 hour and without 1 line of code using the Data Science Studio (Titanic and Otto Product Classification datasets). First, I was really impressed with the overall ease of use and ergonomy of the studio. Building "recipes" for data preparation mostly uses visual processors and the operations are visible directly on a sample of the data, facilitating validation of preparation steps.
In a train / test scenario, i especially enjoyed being able to replicate my recipes on both datasets very easily.
I used the Data Visualization tool to build a few exploratory charts, which can be done quite easily, though it is not as powerful as specialized tools (namely Tableau or Qlik).
For the machine learning part, I restricted myself to visual machine learning in the studio, which already packs the most common algorithms (random forest, logistic, svm, gradient-boosting...). I found the ability to benchmark and compare algorithms performance quickly a great time saver, allowing me to reach a first score in under half an hour on each dataset. Once I chose the best model, I only needed a few clicks to use the model to prepare and score the Test Dataset and make my submissions. Both times I was in the lower half of the rankings but above Kaggle algorithmic benchmarks. For "real" Data Scientists and engineers, the Studio allows them to go much further by building recipes and models in R, Python, SQL, Hive, Pig etc...but even as a business analyst, I felt empowered by the software that enabled me to prepare, analyse and build simple predictive models with my data.

Tim
IT-Consultant, Alemanha
Serviços e tecnologia da informação, 51–200 funcionários
Usou o software para: 1 a 5 meses
Fonte da avaliação

(Predictive) data analysis comprehensible and manageable

5,0 há 3 anos

Comentários: We had used Dataiku for first, in-house data analyses. This allowed us to assess the added value of predictive data analysis ("AI") in particular.

Vantagens:

Getting started with the software is easy and the online tutorials are quite comprehensive. Even beginners relatively unfamiliar with the subject (similar to "Citizen Data Scientist") can get a good start with the tool. This is made possible primarily by the easy-to-understand graphical interface. The selection of machine learning algorithms met our requirements.

Desvantagens:

Dataiku is not yet so widely used. As a result, it is often more difficult to get help for specific problems or errors.

Avaliador Verificado
Usuário do LinkedIn Verificado
Serviços e tecnologia da informação, 10.000+ funcionários
Usou o software para: 1 a 5 meses
Fonte da avaliação

Makes Advanced Analytics User Friendly

4,0 há 4 anos

Comentários: Overall even at the high cost I would recommend this to enable business users since the value proposition is very good. Perhaps no other tool in the market that makes data analytics so accessible

Vantagens:

Intuitive UI for business users to interact with data in an excel like fashion and still be able to run advanced analytics on the data sets. Collaboration is effective.

Desvantagens:

It is expensive for IT to implement. They have packaged easily open source available code but have put in a user friendly UI. Data processing charges are high compared to competition.

Sana Kanwar
Data science intern, EUA
Gestão da educação, 1.001–5.000 funcionários
Usou o software para: 1 a 5 meses
Fonte da avaliação

Data science friendly

5,0 há 6 anos

Vantagens:

It helps me explore various anaylitical domains. Makes life easy and provides accurate results

Desvantagens:

Not much resources to learn from about the software

Avaliação anônima
Serviços e tecnologia da informação, 10.000+ funcionários
Usou o software para: 1 a 5 meses
Fonte da avaliação

データ加工やAutoML機能が使いやすい

5,0 há 2 anos

Vantagens:

GUIでパイプラインを構築でき、かつノードのグループ化を行うことができるので、画面1つでパイプラインの構築や改修ができる。

Desvantagens:

ダッシュボード機能があまり充実しておらず、特に動的ダッシュボードがサポートされていない点が惜しい。このため、例えば新しい特徴量を追加しようとしたときは、事前に別のツールでデータ分析を行った上、このツールに組み込む必要があり、複数のツールを使う必要がある。

Hugo
França
Usou o software para: Não especificado
Fonte da avaliação

Excellent software for data and business teams collaboration in building data science applications

5,0 há 9 anos

Comentários: Easier way for data and business teams collaboration aiming to build data science applications